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1. IMI-RODUCHON 

It is always danghoti to claim a first reference to 
any philosophical puzzlement. but the oldest rafer- 
ende to the enigmatic circularity of ends and begin- 
nings that I know of is by Gui&~me de Machaut, the- 
French poet and composer of the 14th century. He has 
a very characteristically convoluted rondeau, a sort of 
musical M6bius strip, which reads: 

Ma fin est mon commencement 
et man Commencement ma fm 
et teneure vraiment 

Ma 6n est mea oomlnencetllent 

. . 

. . 

. 

~ . 

. . 

. . 

. 

. 

. . 

. . 
. 

. . 

. 

. I 

. . 

. 

. . 

. . 

. I 

. . 

. . 

_-_.. 

. ..I. 

.II.. 

_.... 

._I~. 

. . 

....... 

....... 

....... 

....... 

....... 

....... 

....... 

....... 

....... 

....... 

....... 

....... 

....... 

2507 

2508 

2508 

250s 

25Q9 

2510 

2511 

2511 

2512 

2514 

2515 

2516 

2517 

2517 

2517 

mes tiers chans trois fois seulement 
se retrograde et einsi fin. 

Ma fm est man commencement 
et rnon commencement ma fin.? 

‘My end is my begjnninglamd my beginning is my end/and 
this holds truly//My end is my be&ning/my third song but 
thriae/turns back on itif and thus it mds./,Wy end is my 
btgin&ng/;ind my beginning is my end. Citiillaume de 
Machaut (ca I-1377) cultivated a wide variety d forms 
and styles in poetic and musical composition. He served 
John of Luxemburg as mretary and almoner and travelled 
with him before settling down in Rheims sometim= before 
1340. Here be created P number OC works dedicated to 
various patrons+ including kan. Duke of Berry, the famous 
bibliophile. He. died in April 1377 and wag buried in the 
cathedral at Rhcims where he bad served as canon. 
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Since I shall touch on the enlightening parallelism 
between mathematical madelling and other poetic 
arts, T venture to begin with this r&rence, which wes 
the end both as contained irr the beginning and as 

a fresh beginning in itself and the beginning both a5 

motivated by the end and as the start of a path leading 
to the end. Eliot in Four Quartets (Little Gidding, V, 
214216) putts it very plainly: 

What we call the beginning is often the end 
And to make an end is to make a beginning. 
The end is where we start from. 

L THE MODEL AS IMITATOR 

If we adopt the basically Aristotelian position that 
poetry is a form of imitation or mimesis, it is wy to 
accept mathematical m&elling as a poetic activity, 
for, in doing it, we are engaged in a form of imitating 
nature in mathematical terms. There is the obvious 
first step of representing physical quantities as math- 
ematical variables or parameters, but, beyond this, we 
need to incorporate physical laws and the constitu- 
tion of the materials in question. This is done in the 
faith that the processes of malhematics “imitate”, in 
some sense, the processes of nature and do so in a way 
that frees them from the accidents of particuIarity that 
cling to any experimental investigation. “From what 
we have said”. writes Aristotle,’ “it will be seen that 
tht poet’s function is to describe, not the thing that 
has happened, but a kind of thing that might happen, 
i.e. what is possible as being probable or necessary”. 
The distinction that Aristotle makes between thti poet 
and historian, namely that the latter “describees the 
thing that has been”’ whereas the former “describes 
the kind of thing that might be” might serve as the 
distinction between simulatiolr and m&Iliny. In the 
former there is a &finite attempt to reprduce the 
detail of reality, as KZU through the eyes of the obser- 
vations that have been made and may yet continue to 
be made. The model is thus “something more philo- 
sophic and of graver import” than the simulation 
“since its statements are of the nature rather of univer- 
sals” than “singulars”. b Notice that this has already 
introduced a final, or teleological, element into the 
approach to mo&lling, for it is clear that the purpose 
of a model has to be considered in its formulation. 

and Scott, suggested, no doubt, by their deep know- 
ledge of combustion kinetics, is an extraordinarily 
useful one. Less cluttered than the Brusselator, which 
has the same core, it isolates the essential autocata- 
licity and presents it in its simplest form, It is adapt- 
able to realistic reactor m&Is and not cumbered 
with “pool hypotheses*. It is the analogue of, and 
attractively less “stiff” than, the classic case of the 
non-isothermai exothermic first-order reaction, for 
B plays the role of heat. Heat is a “product” of the 
exothermic reaction whose rate it enhances by raising 
the temperature. It is thus autocatalytic. Similarly, the 
model reaction in which A and B are adsorbed but 
need two adjacent vacant sites to combine as an 
instantly desorbed product C, A f S = A*, B + S= 
B*, AS + B+ + 25 -+ C + 45 does not corrapond to 
any known reaction, but has proved to b a useful 
system: it is isothermal, thus avoiding Arrhenius tem- 
perature dependencies; the vacant sites play the 
autocatalytic rote and this model enjoys a certain 
symmetry rhat the other systems lack. 

Simplified models sometimes also have a more 
subtle validity. It may lx shown, for example, that 
certain types of behaviour are characteistic of certain 
classes of reaction. e.g. those with monotonic kinetics 
[i.e. if c is the concentration of a key reactant, the rate 
of reaction is r(c), where dr/dc a CiJ. If this be ryue, it 
is quite legitimate to take as a typical example the 
simplest case, often the linear one, r(c) = kc. It is 
extraordinary how robust certain features of some 
models are, The map x.+ 1 =f(x,, A) from CO, 1 J into 
LO, 11 shows the period-doubling route to chaos for 
virtually any unimodal function f which depends on 
L in a “tunable” fashioni 

4. THE STRUCTURE OF MODELS 

A model rests on certain physical laws, usually 
conservation principks. Thus, most equation3 are bal- 
ances of some entity which is created or destroyed in 
the process being modelled. These laws are quite gen- 
eral. For example, let F be the net flux of some entity 
(such as mass or enthalpy) into a uniform region, 
C the total tate of generation of the same entity in the 
same region and H the total amount of it Eontained 
theteih. Theo 

I mE NATURE OF 7MTZ-.dT70 IN MAT’HEMATi6AL 

MODELS 

For mathematical models some degree ofimitation 
is of the essence, though it can be quite tenuous at 
times, There is not, so far as I know, any set of 
chemicats, A, El and C, that indulges in the reactions 
A 4 8, A -I- 2B + 3B, B -+ C. Yet this model of Gray 

dH/dt = F + C. (1) 
This is a general balance relationship and is used to 

acknowledge some law of nature, The relations of F, 
C and H to one another, or, equivalently, to SOme 
comrnun variable, define the constitution of the par- 
ticular system within which we are working and are 
known as constitutivd relations. 

If the entity is a particular chemical species pwnt 
in the region in unifarm concentration, c, and P’ the 

IIAn early exposition oI this system, which hss not &n 
bettered by later work, is contained in R M. May’s “Simple 
mathernalical models with very complicated dynamics”. 
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volume of the system, then H = Vc. If the system is In addition to the specification of the initial distribu- 
a stirred tank rertotor with wnstant 300~ rate, q, both tion c(z, O), slnd in contrast to the lumped system 
in and out. and it is ~rfectly mixed, so that the whose equation already contains an inlet term, the 
concentration of the eflluent is c, then F = q(cf - c). distributed system also needs the boundary umdi- 
If the reaction rate cm be expressed as a bCtion of tions at the inlet and the exit, For the tubular reactor, 
the reactant concentration c, the rate of generation these are the much-debated Danckwerts boundary 
per unit volume is - r(c). then G = - C/r(c). Substi- conditions.+ which will be given here without corn- 
tuting, WC have .ment, namely 

Y(dc/dc) = q(c, - c) - R(c). (2) 

Here F, G and H are related to c by their czonstitalive 
relations, which define the nature of the flux and the 
kinetics of the reaction. 

I?C/C?Z = 0 at 2 = L. (61 

Notice how the purpose of the model affecis its 
validity. Had the purpose. been to study the mixing, as 
Professor Villermaux has so penetratingly done, this 
model would be completely unsuitable since it has 
assumed From the first that the mixing is perfect and 
the concentration a single variable. The curious mis- 
nomer “lumped paramet& system” has ken applied 
to the class of models governed by ordinav differen- 
tial equatjons, as opposed to a “distributed parameter 
system”, usuaEly governed by partial differential equa- 
tions with spatial independent variables. Both names 
make nonseng of the wvrd parameter, which is 
a number that stands by CL side of (a&pa) the prob- 
lem and is not patient of being either lumped or 
distributed. The terms “lumped system” and “distrib 
uted system” are acceptable. 

When the variables describing the state of the sys- 
tem are functions of spatial independent variables, we 
must apply the bafance to an arbitrary volume. More- 
over, the measure of flux becomes a vector, f, such that 
f-n is the flux per unit area through a surface element 
with normal n, and generation and quantity have to 
be specified per unit volume as g and h. Then eq. (1) 
translates into 

The doyen of mathematical modellers, N. R. 
Amundson,$ used to say that “all boundary condi- 
tions arise from nature”.* He meant, 1 believe. that 
one’s artefactual imagination goes into the model in 
a way that js removed from nature, whereas the 
boundary conditions express the physical inputs and 
outputs that derive from the natural context. Of 
course, the boundary conditions must be of the type 
that is mathematically appropriate to the equations. 
Thus, in the above example it has been assumed that 
the dispersion can be repre=ntti by a Fickian term 
- D(&,/&-), which gives rise to a second-order deriv- 

ative. Whether or not this is an adequate description 
of the hydrodynamic dispersion that obtains with 
a packed bed, or the Taylorian convective dispersion 
that is associated with a flow profile, is a question for 
the critics of the model. Once this commitment is 
made, the model is a second-order differential equa- 
lion and, so, requires IWO boundary conditions. These 
express the fact that you want all that you put in to get 
in and all that gets out stays out. Their scandal is that 
they imply a discontinuity of concentration at the 
inlet but none at the outlet. Incidentally, Langmuir 
and Damkiihler used the correct boundary conditions 
rather earlier than Danckwerts, but the attribution, 
now less commonly made explicit than hemofore, is 
not unjust, as it was not until Danckwerts’ introduc- 
tion that they were in general currency. 

where n is tbbe outward normal to the surfaoz 20 
surrounding an arbitrary volume R. The use of 
Green’s theorem and the recognition that, if the vari- 
ables are continuous, the integrand of jJJ[ah/ 
at + divf - 81 dV must be zero almost everywhere 
leads to the partial differential equation 

5. HYPOTHESES OF UNIFORMITY 

ahfat = -divr+g. (4) 

This might be applied to the plug flow, tubular 
reactor with dispersion. Here, there is one space vari- 
able, z, the distance from the inlet, and, a c is the 
concentration of the reactant as before, h = c. T(E) was 
defined per unit volume, so u = T(C). f has only one 
component directed along the. tube. and composed of 
two parts, the convective UC and the disprsive 
- D(Js/&). Thus, 

In the Danckwerts Lecture for 1990, I dealt jn some 
detail with the proMem of systems that are, in part, 
uniform, either for good physical reasons or on ac- 
count of some simplifying hypothesis. It is essential to 
take the balance over the whale of the uniform region 
and not to use a control volume which is a “slice” of 
both the lumped and the distributed parts. I wil1 not 



go into this question in detail again.’ One explanation 
seems to lie in the nature of the boundary conditions 
in the two. cases. For a distributed part of the system, 
the boundary conditions are strictly local, but in the 
Iurn@ part, some features, that are in the boundary 
conditions in the distributed part, enter as terms in the 
quations. This is a rather vague statement and a 
better reason has been given by Astarita,’ who has 
done a perturbation analysis of the simple system in 
which the unirorm part is the limit of a distributed 
part as the. dispersal becomes infinite. He shows that 
the bdance over the whale of the Iumped part is the 
correct zero-orde expansion of the slioe balance 
(appropriate enough so long as the dispersal is finite), 
whereas a slice into the lumped region is not. 

6. DIMENSIONLESS VAIuABLR5 AND PARAMETERS 

.For&ght of the end plays a role in the next step of 
modelling, which is to render the equations dimen- 
sionless. I will not dilate here upon the analogy that 
I believe exists ktwce.en ptic imagery and the proper 
appreciation of dimeosionlessness,r but I cannot mist 
putting one passage. to you. In the fmt canto of the 
FurQdiso, Dante is reflecting on the immensity of his 
vision of la Iuce etterna (1.83) and he needs a para- 
meter, a measure of the depth of the ultimate vision, in 
which he saw all things leguto coti more in un volwne, 
only to have it instantly buried within him in the deep 
oblivion of t& dlppqsu bi~flaza 4 o3d&v hrgpch~ 
* “_ 
A2m.?mw’l 

Un punt0 solo rri’& maggior letargo 
the venticinque soli alla ‘mpresa, 
the fi Nettuno ammirar l’ombra GArgo.’ 

We have here a ratio of two characteristic times, the 
prototypical dimensionless parameter. But it would 
be silly to think that the uultle of the ratio (it is 10” if 
a punta lasts 7.9 s) is at issue. As poetry, it is the 
richness of the poetic imagery that we treasure. We see 
the shadow of the Argo slipping over Neptune and his 
submarine court and feel his moment of apprehensive 
woo&r at this new invention which was tn give men 
control over his kingdom. This is a virtue of literature 

‘The k&is dealt with id Ch@m Enma Sci. 46, 1537-1538 
(1991) and in Truns. Insrn C!ML Engrs 69. 168-170 (1991). 
See, in particular, fn. 15. 

%blished in Ghenr. Enqn$ Sci. 4&, 823 (1993). 
#See also nt”y Ut Simulncrum Poesis. New LIterury Hisswry 

20$23 (1988-1989). 
unsgeakable things which it 1~ not lawful that a man 

shouid’utter”. St. Paul in II Cot. 12, 4. 
‘In Sayer’s translation: One moment brings me deeper 

lethargyman 25 ceuturim brought the quest that dazedf 
Nleptuns when Argo’s shadow crossed the gca I c~onC= 
I owe the recollection of this rtas~~uu not to auv wrest 
knodedgc ot the Divine Comedy: but Lin cxposi& 2 the 
last canto by P. M. J. McNair. lately Serena Professor ol 
ItaIian at the University of Birmingham, in a Z~CZWU Dantia 
that he gave when ia the Faculty of Italian at Cambridge 
Univwsity on 25 October 1971. He must not, ol horse, be 
held responsible for my Rights of fancy. 

that the abstraction of mathematics can only remotely 
follow. We have our own mythology and it is pleasant 
and harmless enough to be aware of, or even con- 
sciously to recall, the human associations of our craft. 
To be able to remember, for instance, the pioneering 
insight of D&mkfihler wheneret WC set up a rc&ztor 
equation, and to wwnder how he would have viewed 
current developments had his life been extended to 
a normal span. But this recollection and imaginative 
projection is not an integral part of our analysis as it is 
of the literary scholar’s, and the engineering analyst, 
qua analyst, can be a great success even though he 
hold Henry Ford’s opinion of history. l * 

But we must return to eq. (2). Each term in it has the 
dimensions of moles per unit time. There is one char- 
acteristic concentration, cf. so that it is natural to put 
~1 = c/c,. But there are two characteristic times in the 
system: B = V/q, the retidence time, and c+/r(c,), the 
reaction time. If the intention is to examine the effect 
of varying the residence time 8, it should not lo used 
to render the time dimensionless; if the aim is to vary 
the kinetics then the time 8 should be so used. The two 
eases are: 

P(u) = r(cf u)/r(cs) 

t* = .+I) t/cJ r = t/e 

giving the equations 

(7) 

(8) 

du/d? = (I - ar)/Da - P(u) 

and 

dufdr = 1 - M - PUP(U) 

and the Damkahler number is 

(9) 

Du = r(cr) v/gu,. (10) 

[Since this lecture was given, V. Balakotaiah has 
shown me a rather ktter way of seeing how the 
characteristic times interact. We have 0 as the charac- 
teristic time of residen- and (say) p = es/r (cI) as the 
characteristic time of reaction. Then dedimensionalii- 
ing everything except time, 

dar/dt = (I - tc),‘Q - P(w)/p. 

The time can now be made dimensionless either by 
0 or by p and the Damk6kler number emerges as the 
ratio Ojp. The advantage of Balakotaiah’s formula- 
tion is that the limiting ases, in which one of the three 
quantities, t. fl, p. is much smaller or much larger than 
the others, become very easy to formulate. The ap- 
proach can be used to advantage in what follows, 
where Balakotaiah would recognize a third character- 
istic time, the dispersion time L2/D. I will not pursue 
this method farther, as he will be publishing on this 
topic in the near future.] 

Similarly, for the finite tubular reactor with disper- 
Gcn, L/c plays the role of v/q = B and is one charac- 
teristic time, the other again being the reaction time, 

l *“History is bunk.- Said under oath during his libel suit 
against the Chicago Tribeme. July 1919. 
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Da = r(cJ)l/uc,, I = z/L. 

qb” = Da&. Pe = vL/D, 
(12) 

This uses L as the characteristic length and the 
boundary conditions in both cases are 

- (l/Pe)(&/ar) -I 11 = 1 at 9 = 0 

(i/Pe)(au/a[) = 0 at 4 = 1. 
(13) 

If L is to be vtied, in particular if it is to be ailowed to 
go to int%ainity, it is not suitable to use as the character- 
istic length. There is, however, another length, namely 
the square root of Dcs/r(cs)_ In this case 

mu,& + v(du/dr/) = @u,‘ibj2) - P(u) (14) 

where 

t = rccy,t/cJ”. q = z[*(c,)/Dc, I”’ 

H = L[r(c,)/DcIp, Y = u[c~/Dr(c,)]“~. 
(15) 

Notice that L now occurs only in H and, so, may be 
varM freely. The boundary conditions are 

(I/v)(au/as) + u = 1 at q = 0 
(16) 

Jar/&t = 0 at q = H. 

There is yet another way of making distant dimen- 
sionless, for uc,/r(c,) is also a characteristic length. 
Thus, 

7 = +l. 1 t/+ I e: - dcl)/q 
(17) 

B = WCf)/ncf, A = Dr(c,)/u2cI 

giving the equation 

&/& + &/a~ = A(d=rr/a<=) - P(u) (18) 

with the boundary conditions 

- a(au/agjtu =i atx =o 

au/ab$ = 0 at t = 8. 
(19) 

In all cases there are two parameters, Do and Pa in the 
first, Y and H in the second and A and E in the third, 
and, if wiy one appears in the equations, the other 
pops up in the boundary conditions, 

7. SOME GENERAL PRINCIPLES FOB M&KING THE 

CHOICES OF DNlWMONtlW QUANTITlE$ 

Experience in working with dimensionI= para- 
meters suggests the following princi+3. 

(a) If a study of the effect of varying a certain 
quantity is to be done, make sure that this quantity 
appears in none of the vakbfes and in one and only 
one diiensionless parameter. 

(b) Let the dimensionless dependent variables be 

approximately in the range ZJXI to one and let. the 
dimensionless parameters bear the burden of showing 
the relative magnitudes of the several terms. 

(c) Unless a physical dimension is going to ba 
varied, let the independent dimensionless variables 
range over fixed hire intervals [often conveniently 
(0, 1). I- II, 3~) or such]. 

The choice among several alternatives is govern4 
by the first of these considerations. Thus, if we are 
varying the dispersion coeficienr D, the first mode is 
best. In particular, we note that. as D --L a:, the tubu- 
lar reactor goes over into the stirred tank. For if 
Fe = 0 in eq. (11). I?‘~u/L?~;~ = 0, du,‘a[ is constant, and 
this constant must be zero by the boundary condition 
at < = 1. It fdows that ti is constant and a function of 
r only. Then integration of the xcond form of eq. (1 I) 
from 0 to I gives 

and, using the conditions (i3), gives eqs IS), the equa- 
tion for the stirred tank.’ 

The second of the three modes comes into its own if 
L or v is the quantity to lx varied, since 1; appears only 
in v. and L only in H. In particular, if L a aj, H dr~s 
also and the second boundary condition is equivalent 
to requiring u to be finite as 0 + cr3. Ifv = 0, the first 
spatial detivative diwppears from the equation which 
times the equation for diffusion and reaction in 
a porous catalyst. Actually, the equations are more 
often couched in terms of the first of eqs (11). As Y + 0, 
Fe + 0, Da -+ m. but their producr is the square of the 
Thiele modulus, commonly written as $‘, giving 

aujar = ~=ll/l?~~ - $P(u) (20) 

(note that pl = H). The boundary conditions do not 
go over into those commonly used for the porous stab. 
This w+m~s to lx bwause, ifi the limiting case of no 
flow, the physical situation is radically different and, 
since “all boundary conditions arise from nature”, 
they must be reformulated to reflect this properly. 

Questions of catalyst dilution can best bz answered 
within the framework of the third mode of dedimen- 
sionalization. For, if the catalyst in a bed is diluted to 
a fraction of its activity l/R, r(rs) becomes r(c,)/R 
and L becomes LR. Thus, Z is unaltered and A is 
diminished by a factor of R. This is the known phe 
nomenon of the amelioration of longitudinal disper- 
sion by catalyst dilutinn.f 

8. ALTERNATIVE FORMS OF EQUATIONS 

Sometimes, it pays to look at sets of first-order 
equations rather than a single higher-order equation. 

+This limiting cilse is th mathematical argument ia favor 
ot Danckwerts’ boundary conditions. The physical argument 
is lhat an internal minimum or chc concentration or a disap- 
pcaring reactant is implausible. 

Bcs Ho. T. C. and White, B. S, 1991, Mitigation or 
b&&nixing via atalyst dilution. Chm. Enpzg Sci. 46, 1861; 
A&, R, 1992. Comments on mitigation or backmiwing via 
catalyst dilution. C#Wm. E?z#W sci. 47, 337. 



For example, the steady-state form of eqs (11) is 

(l/Pe)(dzu/d~z) - (du/d[) - DuP(u) = 0 (21) 

with bundary conditions 

- (l/Pe)(du/dC) f u = 1 at { = 0 

dufd[=OatC=l. 
(22) 

If w = (1 /pe)(du(dC), we have 

(du/d<) = Pew 

(dw/dC) - DIP + Pew. 
(23) 

The solutions to these equations can be represented 
by curves in the U-W plane that satisfy 

dw/dv = 1 + DaP(u){Pew = I + A P(u)/w (24) 

andwhichpassfromu-w=Ittow=Ointhefourth 
quadrant. For a given pair of parameters, Do and Pe, 
there is a unique trajectory passing from the diagonal, 
where c is taken as zero, to the u-axis, where it reaches 
the value 1. But it would be a mistake .to seek this 
trajectory by trial and error, changing the starting 
point &,, u0 - 1) until the u-axis is reached along the 
trajectory at exactly ( = 1, for all such trajectories are 
solutions for the given ratio A atid snltl~ Pe. What that 
value of Fe is can be calculated from either of the 
integrals 

This is equivalent to using {/A = vz/D as the dimen- 
sionless length variable, which is well suited to study- 
ing the effect of varying length. 

In fact, we see [Fig. l(A) is drawn for A = 1 and 
a second-order reaction P(U) = u”] that the trajecto- 
ries must stat-t on the part of the diagonal to the right 

OfY~, the starting point of the trajectory that go to 
the origin and for which Fe is infmite. The origin is 
a critical point of eq. (23) with Jacobian 

[ 

0 PP 

DeP’(O) Fe 1 
and hence eigenvalues 

and eigenvectors 

[ 

I --I (I/2) + &/4) + Ap’(O) ’ The origin is thus a saddlepoint and the incoming 
eigen-trajectory the path corresponding to a reactor 
of infinite length and given DamkBhler/Feciet ratio, 
A. Figure l(B) shows some of these trajcztories for 
various A. 

Sometimes, it may help to see the equations beyond 
the bounds of physical reality. Figure l(C) shows the 
phase plane for P(U) = u2 for all values du and w. 

There is a sympathy here, in this playing around 
with different formulations of a model, with the poet’s 

Fig. t . (A) Trajectories of S itl rhe Y-W plane for various Fe, 
A = 1, (B) Trajectorks ol F in the U-W plane ror various 4 
Pe = 03. {C) Trajectories of Y in the whole SW plane for 

A = 1. 

perpetual struggle with words. As Eliot has it (Emr 
C&r, 172): 

So here I am, in the middle way, having had 
twenty yars- 

Twenty years largely wasted, the years of I’antre 
deatx guerres 

Trying to learn to use words, and every attempt 
Is a wholly new start, and a different kind of 

failure 
Because one has only learned to get the better of 

words 
For the thing one no longer baa to say, or the 

way in which 
One is no longer disposed to say it. And $0 each 

venture 
Is a new beginning, a raid on the inarticulate . . 

A HOMOTOPIB OF MODELS 

IT D + 0 in the dispersion model, we reach one of 
the simplest models used in Chemical reaction mgin- 
eering, the plug flow tubular reactor, or PFTR. In the 
steady state, it satisfies the equations 

This can he solved implicitly by quadrature 



The other limit has hew treated above and yields the 
equation of the stirred tank, or CSTR. Let us denote 
the system of equations (26) for the plug flow reactor 
by g, and the stirred-tank equations (9) by a and 
those for the tubular reactor with dispersion by 3. 

Now 9 forms a homatopic family between B and 
1. If we set+ 7 = 2JPe + 2), y + 0 corresponds to 
Y + 9 add y -+ 1 to F -9. The solution to the 
linear case is the only une that can be written down 
in closed form. It is obviously a combination of 
exponentials of p< and - v& where C: - z/L and 

P = (1 - v){Cl + 2lW/(l - Y)J’!’ + 1 l/f m 

Y ={l - ?)([I + 2Doy/(l - r)]“2 - 1)/r. (29) 

In fact, setting t: = 1 and 

u = t1 i- Day/(1 - 7)]/[1 + 2Day/(I - y)]“* 

(30) 

we have 

u(Da, y) = 2/{(V + 1)e” - (G - l)e_-LL). (31) 

Note that as r+O_ p-+ ZJ, v+Da aud u--cl, so 
that w + exp (- Da), whereas, when y + 1. k v --t 
[2Da(l - y)/~]“~. u * [Oay/2(1 - y) J-t13 and u + 
l/(1 + na). 

Them are other ways of devising homotopic 
families. The stirred tank may be broken down into 
N stirred tanks each of (l/iV)th the size of the original. 
Ihen 

U.-l - a* - (Da/N)&.) = 0, ua = 1 (32) 

is a set of equations for the concentration of reactant 
in the mveral tanks. As N + oa, N(u, - h.- t) 
+ r/(c) and we obtain the equations of @. Clearly, 

when N = 1, we have the system 1. Thus, /3 = l/N is 
a normalized parameter that takes the homotopic 
system ,Y of the CSTR sequence from B at p = 0 to 
9 at B = 1. The case of linear kinetics gives 

UN = @a, /?I) = (1 + jIDa)‘_“fl’. (33) 

The full asymptotic expansion of (I + BDa)-l’p aa 
B + 0 is not obvious, but may be obtained by ex- 
panding exp [x - N In (1 + x/N)], which is valid for 
N > X. It gives 

and 

(1 + x/N)-~ _ P-= + (x2/2N)e-* 

+ [a(x)/N’]e_” -I” O(N_3) 

This gives an asymptotic formula for the model 9’ a+ 

‘V. Balakotaiab has p&ted but to me that a better rerm 
for y would be I- = (Z/P4 - (2/Pef)[t - exp (- Pe) J, which 
has the ~arne limits and is the variance of the residence-time 
distribution, as arc a and /? for the other two lamilics. We 
shall see later how perceptive this remark is, but the formula 
for r CUIIIO~ be inv&ed so that PC or y must serve in 
a perametric representation. 

/l+ 0 in the linear cam. The other limiting case, j3 + 1, 
is trivial, 

A third way of getting from 9 to $ is by a PFTR 
with a recycle stream. If the ratio of the volum.+tric 
flow rate of the recycle stream to the volumetric flow 
rate of the fsed is 5 the Damkehler number for the 
reactor is &/(I + A) = aa(l - a) if 

DL = a/(1 4 A). (34) 

Thus, if u is the exit value of c/Es and U the inlet value, 

u-1 -cz+aau (35) 

and 

L?A(i 

Clearly, when u = 0, U = 1 and sq. (31) is the game 
as eq. (27), Le. R+g. As a+l, U~U, since 
U-v=(l-x)(1-U) and, dividing through by 
(1 - a), we have Da = (1 - u)/P(uh which is the same 
as eqs (9). Thus, @ = 1. 

In particular, br a first-order reaction. P(x) = x 
aud 

In (lJ/cr) = ln[rr + (I - c+] = Du(1 - 01) 

or 

u(Du,a~~(i-a)exp[-(1--)~a]/ll-- 

xexp[-(1--)Da]j. 07) 

Again the limiting cases give u(Da, 0) = exp (- &z) 
and u(Da, 1) = l/(1 -t Da), as we should expect. 

The scope of the homotopy ean be seen from sev- 
eral figures drawn for first-order kinetics. Figure 
2 shows a comparison of the three homotopes at 
L-X = B = y = 0.5. In this semi-log plot, the exponential 
exp (- Da) of B is a straight line. Figures 55 show 
that the homotopic parameters spread the cures out 
nicely between the exponential, 9, and hyperbolic, J, 
limits. In these figures, 01, B and y are the parameters 
for &?, .Y and r, respectively. 

It is clear that all three families give rather similar 
monotone curves and that it may he hard to distin- 
guish them. One device is to use the difference be- 
tWl3Xl the 1 J(1 + Do) of the model 1 and the 
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exp (- Da) offe as the SC& at a given DCJ, writing 

U(Dq a) = [lr(Du, a) - exp(- Da)]/[lj(l + Da) 

- exp (- Da)] (38) 

with similar expressions when the parameter is #I or 7+ 
With a mrtain amount of algebraic labour, the 
asymptotic behaviour as Da + 0 can be obtained. 
Thus, in the linear cases, we have 

U(Dn, m) _ u + a(1 - u)Da/3 + . . . , 

U(Do, 8) - B + Z/3(1 - B)Da/3 f * -. 

UI% P) - r(Y) - [r/(1 - ?J)l(l --IA4 

x h/Cl - r)ll - exp I: - 2U - 7YYlth (39) 

Figure 5 shows that this function does not differ 

D.2 

0 

0 0.2 0.4 Y 0.6 0.5 1 

Fig. 6. The Function r(r), 

greatly from y over the whole interval. It is, of course, 
the variance which Balakotaiah suggested (v. sup. fn. 
26). and suggests a fourth general principle for tbe 
choice of dimensionless parameters to be added to 
those above; namely, whenever possible choose para- 
meters that have a deeper meaning. 

lo. THE INVERSE PROBLEM 

The steady-state performance of a chemical reactor 
is still of fundamental importance to chemical reactor 
analysis, even though the exciting advances are being 
made in the understanding of dynamics of reacting 
systems. The direct problem, that of Calculating the 
performance of a reactor when the model and kin&= 
are providad, is largely solved. thanks to the power of 
the computing engines of our day. The inverse prob 
lem, even in quite elementary situations, can, however, 
still present considerable difficulties and we are far 
from a comprehensive answer. For example, if we 
confine ourselves to monotonic reaction kinetics and 
know the performance of the reactor through deter- 
mination of the exit concentration as a function af the 
DamkBhler number, u =f(Du). This will clearly de- 
pend on the nature of the mixing in the reactor, which 
at this level of sophistication, we ass&ate with 
a choice of model for the reactor. If we have a partially 
mix4 reactor and model it as a CSTR, we would infer 
the--wrong kinetic expression. To take an extreme 
example, a firstorder reaction in the stirred tank 
would, by eq. (91, give 

f(Du) = l/(1 5 Da). 

If this performance were mistakenly thougbt to be 
that of a monotonic reaction in’ a PFTR with no 
dispersion, it would be thought to satisfy eq. (1 I) and 
so correspond to a kinetic expression P(U) obtained 
by eliminating aa between P(u) = -/‘(Da) and 
u =f(Du), Le. P(U) = uz. A first-order reaction ap- 
pears to lo second-order if the nature of the reactor is 
ignored. Similarly, a first-order reaction in a Pfl’R 
gives f(Dn) = exp(- Da), and, by eqs (9), this per- 
formance oti the part of a CSTR would imply kinetic 
P(U) = (1 - u)/[ln (I/U)]. Figure 7 shows the differ- 
ence this makes. 

The two extremes of the homotopic family 9, the 
PFTR, and 2, the CSTR, yield wily to the invert 
problem, for, givenf(Da), P(v) is obtained by elimin- 
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sting Da between 

B: Y -f(Ba), P(rr) - -f’(Da) (40) 

1: II =I(Du). P(U) = [I -f(Da)]/Da. (411 

Alternatively, we can use Da.as a parameter along the 
u-P(u) curve. The data are assumed tv be normalized 
so that J(1) = 1; hence, Da = 0 corresponds to 
(u, P) = (1. 1) and Da = a~ to (u. P) = (0, 0). 

But if the two extremes are easy, the intermediate 
members of the homotopy are very refractory when it 
comes to finding an algorithm fur the inverse prob- 
lem_ True, there is always the possibility of fitting, by 
least*quared deviation, an appropriate P(u) curve, 

but this is not a satisfying answer except under the 
exigencies of practice. Consider only the configuration 
of two CSTRs in sequenoe; 

1 - !dl - (Du/Z)P(u,) = 0 

It, - It2 - (DU/Z)P(U~). 
(421 

The data give u2 =f(Da) and say nothing about ur . 

The equations can, however, be salved in the form 

ui = ir, + (BU/2)P(Ux ) (43) 

P(u, 1 = @Pa) Cl - u1 - @rP)P(% 11. v-4) 

Were the kinetic law known, it would have hem 
reprexcnted by a monotonic curve from (0,O) to (I, 1) 
and, starting from [arz, P&)], the point [ul, P(ul)] 
could be found from eqs (43) and (44) and would be on 
the same kinetic curve. The value of Da used in these 
equations would be given by the inverse function. F, 
of I; i.e. Da = F(u, ) = F[f(Da)]. Since the kinetic 
law is not known, the best we can hope for is an 
intelligent guess; but, from this starting point. these 
equations provide a map that can lo used mpeatedly 
and would, had the starting point been exact, give 
a sequence of points converging on (I, 1). If this eriti- 
cal point is a saddle, we have a practical trial-and- 
error method that starts with a guessed value for P(u) 
and fux& the separatrix by iterating until the traject- 
ory hesitates long enough in the neighbourhood of 
(1, 1) &fore diverging to left or right, However, it is 
limited to the case of ~TIO stirred tanks, for an exten- 
sion to three would give only three equations for the 
four unknown intannextiate vale OE u and P(U) 

11. RFAUINNG OTHER PEOPLE’S MUIHZIS 
The simplest models provide the found&ons for 

more complex models which have to be construczezl 
to answer more Complicated problems. Thus, the 
equations giva so far are for the isothermal tubular 
reactor (sometimes paradoxically known as an 
“emptg’ tubular reactor). A momentum balance is 
quired if tire assumption of plug flow is discard4 
and an enthalpy balane is needed to obtain an mua- 
tion For the temFature. Witi a packed bed, a further 
set of exfuations is needed for the distribution bf con- 
centration and temperature within the particles, 
though Carberry has shown that the pellets may often 
be taken as isothermaIt 1 will not go into the detail of 
wtting up such a set of equations, for this has been 
covered in masterly fashion in a paper that deserti to 
be better known than it is.j Rather will 1 start from 
a mode1 in the literature and try to show how to read 
it. It is entirely justifiable, in writing a paper, to 
suppress some of the tedium of the research and start 
with a developed model taking it for granted that the 
reader can fill in the missing stages at will. There is an 
analogy here with literary criticism, or rather, with 
what used to be called the “lower” criticism-the 
establishment of the text. This has a faintly old- 
fashioned ring in days when a student can become 
indignant at having his paper on the line To thy high 
requiem become a god” rejeted, ‘Ijust because” he 
had misread his fancy, ‘god”, for Keats’ “sodP! The 
so-called higher criticism is concerned with the inter- 
pretation of the text, and this presuma the lower, in 
that it needs a valid tent to work from. There is 
a tendency on the part of some modern crtics to place 
less emphasis on the author than common sense 
would allow and I have tried to give one common 
reader’s conclusions after venturing into the stormy 
seas of cvntempvrary criticism elsewhere.’ We are 
fortunate in the engineering sciences to have a pr&se 
language, impoverished of overtones it may be (see 
remarks above), but it is not generally obnoxious to 
the pepdar -isms, interpretive fashions or politi& 
corrections of the day. Ii makes our congresses more 
sober affairs than the risibilities of MLA meetings, 
but, paradoxically, frets us to take ourselves rather 
less s&ously than do our literary brethren. 

As a brief example of bow one begins to read 
another’s model, let me refer to a paper of 
Balakotaiah and Lussll which uses the two-phase 
mocfel of the catalytic bed. Thus, we mad at the top of 

‘Carberry, J. J., 1967, Alcuni spetti inge@tiei riguar- 
danti Is reaxionc catalitici. QcLad. 1ng. C!I*~. Ital. 3, 73. 

‘Amundson, N. R, 1970, Mathematical models of fixed 
bed reactors. Berichte dm Bunurn-Ga~llscm fur physlk- 
&whe Chm& 74,90; Also to be found jn me Mathemkal 
U&rstanding of C-d Engimering Systems (Edited by 
A. Varma snd R. Ati), pp lOl,-109. Pcrgatnen, London 
(1980). 

jAris, K.. An my en co~lemporary tiitidsm. New i&r- 
ar 

4 
Hisrory (to appear). 

Ilalakataiah. V. and Luss. lYX, 1991. Expticit runaway 
criterion for catalytic reactors with transport Ijmitations. 
A.I.CL.E. J. 37, 17808. 
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page 1781: “Assuming plug flow and n@igible axial 
dispersion, the dimensionless energy balance fo! 
a first-order reaction has the form: 

dB/di = Aexp(B.)q - St@ - 0,). B(0) = 0”. 

We should-and can, in a paper as well written as this 
is-be able instantly .ta recognize (and subsequently 
confirm from the definitions that follow and the Nota- 
tion at the end of the paper) the three dimension&s 
temperatures; the first, 0, is the temperature of #he 
reaction stream (since it is a function of C and since it 
is the driving force in the wail cooling term--which is 
identifid by the Stanton numberA the second, S,, the 
wall temperature (because &its occurrence in the walI 
oooling term) and the third, 0,, the catalyst pellet 
temperature (because it is in the reaction term). We 
note also that the positive exponential is king used 
and cheek back to see if this assumption is made 
explicit in the previous paragraph, which we may not 
have read thoroughly in our haste to get to the aqua- 
tions. It is, for we read: “We assume that the temper- 
ature rise at ignition is small enough so that the 
Arrhenius temperature dependence can he repIaced 
by the positive exponential approximation.” Our eyes 
catch the next sentence: “We also neglect ttte reactant 
consumption is the fluid phase (but account for dif- 
fusional limitations within the catalyst”. .So q, which 
one might otherwise have thought to be the dimen- 
sionless concentration of a first-order reactant, is tin 
effectiveness Factor. This is confirmed by a glance 
downwards to eq. (6), where the familiar form of the 
effectiveness of an isothermal sphere is to be seen, 
followed by the definitions of the Biot number and 
Thiele modulus. Why is the Thjele modulus a function 
of O,? Of course? through the rate constant under the 
square root, which is wiy t&re is an exponential of 
0.58,--the result of the positive exponential approx- 
imation. 

A glance at their defmitions (using their equation 
numkrs), 

confirms these first impressions and reveaI$ the fm- 
midable dimensionless group A. This appears to be 
the product of a Damktihler. a Prater and an 
Arrhenius numhr; the latter two appear in the para- 
meter B in Loss and Balakoraiah’s definition (5). 

Next, we am given the relation between the “solid 
and fluid temperaiures . 

0, = 0 + BDu,q exp (0.) (3) 

where Da, is the particle heat Damkiihler number 
defined by: 

Dati = C~,c,s~~~~)/~l~ CJ’,l%l WY. 

This must derive from a heat balance on the particle. 

which, though isotiiermat, is a source of heat through 
the exotbermic reaction within which it just balances 
the lo& of heat to the fluid. The “particle heat 
Damkijhler number” is unfamiliar-is it a new one? 
Certainly it is a Damk8h!er number, in the sense that 
it is the ratio of a reaction rate to a transport rate, but 
it does not correspond to any of the four numbers in 
DamkBhier’s classic l~per.~ It can be written as 
[k( Tf)L/lrd]/[SBLh/ ~,,u,,P~c,,~], where the first term 
is the DamkBhlar number aLready in u&z, A/B, and the 
wad is constructed like a reciprocal Stanton num- 
ber, but with the particle heat transfer co&dent, h, in 
place of the wall transfer coefficient, U. We are not 
surprised to see it Later in a ratio with the Stafitcrd 
-number. 

Since it is my purpose here to illustrate how one 
reads a model that one meets for the first time in 
someone else’s work, I have set down my reaction to 
the introduction to this paper. Once one has grasped 
the basic model one can go on to the higher criticism 
c~f it. Such is not my purpose here. 

In a 1476 papsr I attempted to give some maxima 
for mathematical modelhng. Since the last was “These 
maxims will s&f-destruct. Make your own!” I would 
IX inconsistent were I to repeat them here.’ On re- 
view, they stand up quite weil and most have been 
exercised in this essay. 1 will allude to but one and that 
the first, so that my end may be my beginning-or, at 
least, yesteryear’s beginning. “Cast the problem in as 
elegant a form as possible.” 

The role of aesthetics in the pursuit of truth has 
long been a question of vital interest to scientists! 
I am not pretending that the mathematical models 
with which the engineer deals have the same signi- 
fiGan= as the genera1 theory of relativity &ho@, in 
these dayo -of the resurgence or populat ~ulttire, such 
pretensions might be encouraged in ozrtain quarters. 
But mathematial models by their very name may be 
expected to share the elegance that is one of the chief 
criteria of good mathematics. Its hallmarks are 
economy and aptness. The passage from Eliot that 
I began with continues& 

Aod every phrase 
And Sentence chat is right [where every word is at 

home, 
Taking its pIace to suppott the others, 
The word neither diffident nor ostentatious. 

‘Damkiihler, G., 1936, EiniXl%e der StrCmung, Diffusion 
und des W&meii&rganges auf die Lcistung van Reak- 
tiQl,$tjbl. 2. Ebktruchetn. 42, 846. 

fHow to get the moat out OI an equation without really 
trying. Ckem. Errg~g Edw. IO, 114 (1976) to be reprinted as 
LJX appendix to Daver’s roorrhcoming dnt of my Math- 
@marieal Meddling Techniques. Fitman, London (1978). 

%c, for instance, Chandrasekhar. 5. 1987, Truth orpd 
Bermty: Aes0#cs and Motivarions Jo Science. WnivwYity ol 
Chicago Press, Chicago. 
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An easy cornmerE of the old and the nxw, 
The common word exact without vulgarity, 
The format word precise but not pedantic, 
The complete consort dancing together) 
Every phrase aad every sentence is an end and 

a kginning, 
Every poem an epitaph. 

Dare I add? 
Every choice and every equation is an end aod 

a beginn& 
Every model an epitaph. 

chemical species 

NOTATION 

adsorbed chemical species 
coefficient in the asymptotic expansion of 

89. (33) 
Darnkahler number 
flux vector, net flux 
generation per unit volume, total genera- 
tion 
content per knit volume, Cantent (e.g. 
mass, enthalpy) 
length of tubular reactor 
number of stages in Y 
PflR with no dispersion 
Peclet number 
dimensionless reaction rate 
CSTR 
volumetric flow rate 
recycle reactor 
reaction rate 
sequence of CSTRs 
PFTR with dispersion 
Eoncentration as a fraction of the differ- 
ence between 9 and 1 
dimensionless concentration 
volume of reactor 

Wpp)(d4dL’) 
distance from inlet in PFTR 

Greek Ltters 

vi F, 7 Rcmot~py parameters 
r alternative parameter to y 
A Da/ Pe 

L tl. t forms of dimensionless length 

HV exponents in the solution of 9 for linear 
kinetics 

tu D/VI,, dispersion or reciprocal Pellet 
number 

d 

T, T’ 

cunstant in the solution of r for linear 
kinetics [eq. {30)] 
dimensionless time 
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itative observations on the tubular ruactor. Can. J. Chem 
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APPENDIX 

It might be appropriate to draw attention to ame of the 
early work on the one-phase tubular reactor model, even if 
only by way of an appendix which maka no pretence to 
comprehensiveness. The solution of T was obtained by 
Irving Langmuir in 1908, though this paper does not seem to 
have had much currency, for FGnter and Geib in 1934 
(quoted by Barr&&r in 1937) refer to the 1908 paper by 
Bodcnstcin and Wulgast that provoked Langmuir’s+ but not 
to Langmuir’s solution, obtained by linearization The 
boundary conditions [Danckwerts, 1953), over which much 
ink was spilled in the 19% were obtained by Langmuir in 
1908 and he deals with the limiting cases ol “mixing nearly 
complete* and ‘only slight mixing”. Langmuir appears to 
have been the first to have considered the homotopy BS$ 
and the homotopy parameters, cz, ,9, y, that we have been 
using might suitably be called Langmuir numbers, saw that 
this was a minor work of a xienlist bt known for many 
other achievements. Fiirster and Gab, anticipating, though 
not exphcitly, the idea of a residence-time distribution, used 
a curiously round-about method of obtaining the st&y- 
state solution, first determining the residence-timt distribu- 
tion and then integrating the exponential over all timer. 
They credit Bodenstein and Wolgast (IX@) with recognizing 
that there are different reaction times and with giving $ as 
the Iimiting case of T. This anticipates Dan&we& (1853) 
treatment of the residence time distribution by nearly 20 
years, though, of course with nothing like Danckwerts’ gen- 
erality. sin= it deals only with the case of longitudinal 
dispersion in a tube_ The analogy hciwecn _Lp and .F is, of 
course, standard text hook fare (Levenspiel, 1972; Ark., 1989). 
Amundson and Arir (19S7) showed how ir fitted tith the 
observation that the Peclet number (bad on the particle 
diameter) in a packed bed has a value near 2, as Wilhelm and 
McHcnry (1957) had found in an elegant scrks of exd- 
merits. Lapidus and Deans (1960) exploited it for more de- 
tailed m&s of the packed bed. More recently, Gunn and 
Vortmeycr {1990) have introd a reaction-independent 
transformation that shows how the Y, 9 equivalence holds 
Br systems *I first-order reaction% Their parameter I is my 
y and is interpreted as the probability of axial displacement. 


