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Abstract—The mathematical model is considered as an imitator of a natural phencimenon ot an artilactual
construction. Its structure and expression are discussed with special reference to the establishment
of boundary conditions and the importance of rendering the variables and parameters dimensionless.
This is illustrated by the simpler models of chemical reactors and the mutua! relationship of these is

considered.
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L INTRODUCTION

It is always dangerous to claim a first reference to
any philosophical puzzlement, but the oldest refer-
ence to the eniggmatic circularity of ends and begin-
nings that I know of is by Guiltaume de Machaut, the.
French poet and composer of the 14th century. He has
a very characteristically convoluted rondeau, a sort of
musical Mabius strip, which reads:

Ma fin est mon commencement
ct mon commencement ma fin
et teneure vraiment

Ma fin est mon commencement

mes tiers chans trois fois seulement
s¢ retrograde et einsi fin.

Ma fin est mon ¢commencement

¢t mon commencement ma fin.t

My end is my beginning/and my beginning is my end/and
this holds truly//My end is my beginning/my third song but
thrice/turns back on itself and thus it ends.//My end is my
beginnmg/and my beginning is my end. Guillanme de
Machaut (ca 1300-1377) cultivated a wide variety of forms
and styles in poetic and musical composition. He served
John of Luxemburg as secretary and almoner and travelled
with him before settling down in Rheims sometimes before
1340. Here he created & number of works dedicated to
various patrons, including Jean, Duke of Berry, the famous
bibliophile. He died in April 1377 and was buried in the
cathedral at Rheims where he had served as canon.
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Since T shall touch on the enlightening parallelism
between mathematical modelling and other poetic
arts, [ venture to begin with this reference, which sees
the ¢nd both as contained in the beginoing and as
a fresh beginning in itself and the beginning both as
motivated by the end and as the start of a path leading
to the end. Eliot in Fowr Quartets (Little Gidding, V,
214-216) puts it very plainly: :

What we call the beginning is often the end
And to make an end is to make a beginning.
The end is where we start from.

3. THE MODEL AS IMITATOR

If we adopt the basically Aristotelian position that
poetry is a form of imitation or mimesis, it is casy to
accept mathematical modelling as a poetic activity,
for, in doing it, we are engaged in a form of imitating
nature in mathematical terms. There is the obvious
first step ol reptesenting physical quantities as math-
ematical variables or parameters, but, beyond this, we
need to incorporate physical laws and the constitu-
tion of the materials in question. This is done in the
faith that the processes of mathematics “imitate”, in
some sensg, the processas of nature and do so in a way
that frees them from the accidents of particularity that
cling to any experimental investigation. “From what
we have said”, writes Aristoile,? “it will be seen that
the poet’s function is to describe, not the thing that
has happened, but a kind of thing that might happen,
ie. what is possible as being probable or necessary”.
The distinction that Aristotle makes between the poet
and historian, namely that the latter “describes the
thing that has been™! whereas the former “describes
the kind of thing that might be” might serve as the
distinction between simulation and modeiling. In the
former there is a definite attempt to reproduce the
detail of reality, as seen through the eyes of the obser-
vations that have been made and may yet continue te
be made. The model is thus “something more philo-
sophic and of graver import” than the simulation
“gince its statements are of the nature rather of univer-
sals” than “singulars™.! Notice that this has already
introduced a final, or teleological, element into the
approach to modelling, for it is clear that the purpose
of a model has to be considered in its formulation.

3 THE NATURE OF MITATIO IN MATHEMATICAL
MODELS
For mathematical models some degree of imitation
is of the essence, though it can be quite tenuous at
times, There is not, so far as I know, any set of
chemicals, A, B and C, that indulges in the reactions
A— B A 4 2B — 3B, B —~+ C. Yet this mode! of Gray

tArisiotle, Poetics 145ka, 36
iIbid. 1451b, 5.
YIbid. 1451b, 7.
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and Scott, suggested, no doubt, by their deep know-
ledge of combustion kinetics, is an extraordinarily
useful one. Less clutiered than the Brusselator, which
has the same ¢ore, it isolates the essential autccata-
licity and presents it in its stmplest form. It is adapt-
able to realistic reactor models and not cumbered
with “pool hypotheses”. Tt is the analogue of, and
attractively less “stiff " than, the classic case of the
non-isothermal exothermic first-order reaction, for
B pilays the role of heat. Heat is a “product™ of the
exothermic reaction whose rate it enhances by raising
the temperature. It is thus autocatalytic. Similarly, the
model reaction in which A and B are adsorbed but
need two adjacent vacant sites to combine as an
instantly desorbed product C, A + 8 = A* B + 8=
B*, A* + B* + 28 — C + 48, does not correspond to
any known reaction, but has proved to be a useful
system: it is isothermal, thus avoiding Arrhenius tem-
perature dependencies; the wvacant sites play the
autocatalytic role and this model enjoys a certain
symmetry that the other systems lack.

Simplified models sometimes also have a more
subtle validity. It may be shown, for example, that
certain types of behaviour are characteristic of certain
classes of reaction, e.g. those with monotonic kinetics
[i.e. if ¢ is the concentration of a key reactant, the rate
of reaction i3 r(c), where dr/de = (0]. If this be true, it
is quite legitimate to take as a typical example the
simplest case, often the linear one, r(¢) = kc.. It is
extraordinary how robust certain features of some
maodels are. The map x, 1 = f(x,, A) from {0, 1] into
[0, 1] shows the period-doubling route to chaos for
virtually any snimodal function f which depends on
A i a “tunable” fashion,®

4. THE STRUCTURE OF MODELS

A model rests on certain physical laws, usually
conservation princtples. Thus, most equations are bal-
ances of some entity which is created or destroyed in
the process being modelled. These laws are guite gen-
eral. For example, let F be the net flux of some entity
(such as mass or enthalpy) into a uniform regiom,
G the total rate of generation of the same entity in the
same region and H the total amount of it contained
thergin. Then

dH/dt = F + G. (1)
This is a general balance relationship and is used to
acknowledge some law of nature. The relations of F,
G and H to one another, or, equivalently, to some
common variable, define the constitution of the par-
ticular system within which we are working and are
known as constitutive relations.
If the entity is a particular chemical species present
in the region in uniferm concentration, ¢, and V the

An early exposition of this system, which has not been
bettered by later work, is contained in R. M. May’s “Simple
mathematical models with very complicaied dynancs™
Nature 261, 459 (1976)
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volume of the system, then i = Fe. If the system is
a stirred tank reactor with constant flow rate, g, both
in and out, and it is perfectly mixed, so that the
concentration of the effluent is ¢, then F = g(c, — ¢).
If the reaction raite can be expressed as a function of
the reactant concentration ¢, the rate of generation
per unit volume s — r{c), then G = — ¥Fr(c). Substi-
tuting, we have

Vide/dt} = gle, — ) — Vr{c). (2)

Here F, ¢ and H are related to ¢ by their constitutive
relations, which define the nature of the flux and the
kinetics of the reaction,

Notice how the purpose of the model affects its
validity. Had the purpose been to study the mixing, as
Professor Villermaux has so penetratingly done, this
madel would be completely unsuitable since it has
assurned from the first that the mixing is perfect and
the concentration a single variable. The curious mis-
nomer “lumped parameter system”™ has been applied
to the class of models governed by ordinary differen-
tial equations, as opposed to a “distributed parameter
system"”, usually governed by partial differential equa-
tions with spatial independent variables. Both names
make nonsense of the word parameter, which is
a number that stands by the side of (mipa) the prob-
lem and is not patient of being either lumped or
distributed. The terms “lumped system™ and “distrib-
uted system”™ are acceptable.

‘When the variables describing the state of the sys-
tem are functions of spatial independent variables, we
must apply the balance to an arbitrary volume. More-
aver, the measure of lux becomes a vector, f, such that
f-n is the flux per unit area through a surface element
with normal n, and generation and quantity have to
be specified per unit volume as g and A Then eq. (1)
translates into

onffrar= e o

where n is the outward normal to the surface éQ)
surrounding an arbitrary volume ). The use of
Green's theorem and the recognition that, if the vari-
ables are continuous, the integrand of ([[[8k/
dt + divfl — g]1d¥V must be zero almost everywhere
leads to the partial differential equation

Shfdt = — divl+ g. @)

This might be applied to the plug flow, tubular
reactor with dispersion. Here, there is one space vari-
able, z, the distance from the inlet, and, f ¢ 1s the
concentration of the reactant as before, A = ¢. ric) was
defined per unit volume, so g = r{c). f has only one
component directed along the tube and composed of
two parts, the convective vc and the dispersive
— D(de/dz). Thus,

(Pe/Br) + v(dcidz) = D(E2c/Bz%) —r(e). (5)
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In addition to the specification of the initial distribu-
tion ¢fz, 0}, and in contrast to the lumped system
whose equation already contains an inlet term, the
distributed systern also needs the boundary condi-
tions at the inlet and the exit. For the mbular reactor,
these are the much-debated Danckwerts boundary
conditions,! which will be given here without com-

‘ment, namely

ver = v — D(fcffz) atz=0

dc/fz =0 atz=L (6)

The doyen of mathematical modellers, M. R.
Amundson,? used to say thar “all boundary condi-
tions arise from nature™’ He meant, T believe, that
one’s artefactual imagination goes into the model in
a way that is removed from nature, whereas the
boundary conditions express the physical inputs and
outputs that derive from the natural context. Of
course, the boundary condittons must be of the type
that is mathematically appropriate to the equations.
Thus, in the above exampie it has been assumed that
the dispersion tan be represented by a Fickian term
— D{@c/dz), which gives rise to a second-order deriv-
ative. Whether or not this is an adequaie description
of the hydrodynamic dispersion that obtains with
a packed bed, or the Taylorian convective dispersion
that is associated with a flow profile, is a question for
the critics of the model. Once this commitment is
made, the model iz a second-order differential equa-
tion and, se, requires two boundary conditions. These
express the fact that you want all that you put in to get
in and all that gets owt stays out. Their scandal is that
they imply a discontinuity of concentration at the
inlel but none at the outlet. Incidentally, Langmuir
and Damk&hler used the correct boundary conditions
rather earlier than Danckwerts, but the atrribution,
now less commonly made explicit than heretofore, is
not unjust, as it was not until Danckwerts’ introduc-
tion that they were in general currency.

5. HYFOTHESES OF UNIFORMITY

In the Danckwerts Lecture for 1990, T dealt in some
detail with the problem of systems that are, in part,
uniform, either for good physical reasons or on ac-
count of some simplifying hypothesis. It is essential to
take the balance over the whole of the uniform region
and not to use a control volume which is a “slice™ of
hoth the lumped and the distributed parts. T will not

fFor a fuller account of these than will be given here see
the ith Danckwerts lectuze “Manners makyth modellers”
given on 16 October 1990 and published in Chem. Engng Sci.
46, 1535 {1991) and Trans. fnstn chem. Engrs 69, A165 (1991).

*A selection of his papers was published under the title The
Mathemgticsd Understanding of Chemical Engineering
Systemns (Edited by A. Varma and R. Aris). Pergamon (1980).

“Omnes conditiones circumferentiales ex  natura
Qriuniur” or “EAVTa T EPOIHE Vo ryvETaLT.
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gointo this question in detail again.’ One explanation
seems to [ie in the nature of the boundary conditions
in the two cases. For a distributed part of the system,
the boundary conditions are strictiy local, but in the
lumped part, some features, that ave in the boundary
conditions in the distributed part, enter as terms in the
equations. This is a rather vagne statement and a
better reason has been given by Astarita,’ who has
done a perturbation analysis of the simple system in
which the undorm part is the limit of a distributed
part as the dispersal becomes infinite. He shows that
the balance over the whole of the lumped part is the
correct zero-orde sexpansion of the slice balance
{appropriate enough so long as the dispersal is finite),
whereas a slice into the lumped region is not.

6. DIMENSIONLESS VARIABRLES ANP PARAMETERS

Foresight of the end plays a role in the next step of
modelling, which is to render the equations dimen-
siomless. 1 will not dilate here upon the analogy that
I believe exists between poetic imagery and the proper
appreciation of dimensionlessness,! but T cannot resist
putting one passage to you. In the last canto of the
Paradiso, Dante is reflecting on the immensity of his
visien of la luce etterna (1.83) and he needs a para-
meter, a measure of the depth of the ultimate vision, in
which he saw all things fegato con amore in un volume,
only to have it instantly buried within him in the deep
oblivion of w& &ppnra pAuete £ ovkkéov kviypdme
Andiaa!

Un punto solo m'é maggior letargo
che venticinque secoli alla "mpresa,
che f& Nettuno ammirar "ombra d’Argo.’

We have here a ratio of two characteristic times, the
prototypical dimensicnless parameter. But it would
be silly to think that the value of the ratio (it is 10'° if
a punto lasts 7.9g) is at issue. As poetry, it is the
richness of the poetic imagery that we treasure, We see
the shadow of the Argo slipping over Neptune and his
submarine court and feel his moment of apprehensive
wonder at this new invention which was to give men
control over his kingdom. This is a virtue of literature

"The topic is dealt with in Chem. Engng Sci. 46, 15371538
(1991) and in Trans. Instn chem, Engrs 69, 168-17Q (1991),
See, in particular, fn. 13.

tPublished in Chem. Engng Sci. 48, 823 (1993).

YSee also my Ut Simulacrum Poesis. New Literury History
20, 323 (1988-1989).

I« . . unspeakable things which it is not lawful that a man
should utter”, 8¢ Paul in 1T Cor. 12, 4.

TIn Sayer's translation: One moment brings me deeper
lethargy/Than 25 cemturies brought the quest that dazed;
Neptupe when Argo’s zhadow crossed the sea 1 confess
I owe the recollection of this passage, not to any great
knowledge of the Divine Comedy, but to an exposition of the
last canto by P. M. J. McNair, lately Serena Professor of
Italian at the University of Birmingham, in a fectwra Dantis
that he gave when in the Faculty of Ttalian at Cambridge
University on 25 Qoteber 1971, He maust not, of course, be
held responsible for my flights of fancy.
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that the abstraction of mathematics can only remotely
follow. We have cur own mythology and it is pleasant
and harmless enough to be aware of, or even con-
sciously to recall, the human asseciations of our craft.
To be able to remember, for instance, the pioneering
insight of Damkdhler whenever we set up a reactor
eguatton, and to wonder how he would have viewed
current developments had his life been extended to
a normal span. But this recollection and imaginative
projection is ot an integral part of our analysis asitis
of the literary scholar’s, and the engineering analyst,
qua analyst, can be a great success even though he
hold Henry Ford's opinion of history. **

But we must return to eg. (2). Each term in it has the
dimensions of moles per unit timme. There is one char-
acteristic concentration, ¢, so that it is natural to put
u = c¢fc;. But there are two characteristic times in the
systemm: € = ¥ /g, the residence time, and cp/r(c;), the
reaction time. If the intention is to examine the effect
of varying the residence time &, it should not be used
to render the time dimensionless; if the aim is to vary
the kinetics then the time § should be so used. The two
CASeS are:

P(u) = ric,w)rie;) 0]

T =r(c )t/c, T=1r/0 (8)

giving the equations
dufdt’ = (1 — ulfDa — Pw)
and
dufdr=1—u— DaP(u) )
and the Damkohler aumiber is

Da = r(cp)Vige,. (10)

{Since this lecture was given, V. Balakotaiah has
shown me a rather better way of seeing how the
characteristic times interact. We have # as the charac-
teristic time of residence and {say) p = ¢;/r(c;) as the
characteristic time of reaciion. Then dedimensionaliz-
ing everything except time,

du/dt = (1 — ©)/8 — Piu)/p. |

The time can now be made dimensionless either by
@ or by p and the Damkoékler number emerges as the
ratio 0/p. The advantage of Balakotaiah’s formula-
tion is that the limiting cases, in which one of the three
quantities, ¢, 8, p, is much smaller or much larger than
the others, become very easy to formulate. The ap-
proach can be used to advantage in what follows,
where Balakotaiah would recognize a third character-
istic time, the dispersion time L2/D. I will not pursue
this method farther, as he will be publishing on this
topic in the near future.]

Similarly, for the finite tubular reactor with disper-
sion, L/r plays the role of /g = 8 and is onre charac-
teristic time, the other again being {he reaction time,

***History is bunk.” Said uwnder oath during hiz libel suit
againet the Chicago Tribure. July 1919,
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p = ¢pfrics). Then the two versions are:

/ot + (1/Da)(Pu/80) = (1/DaPe) (8 4/} — P(u)
(n

Su/dt + Bu/8L = (1/Peld?u/6l?) — DaPlu)

where

and

Da =ric;)Livey, {=3z/L a2
Pe=uL/D, ¢2=DaPe.

This uses L as the characteristic length and the
boundary conditiens in both cases are

— (1/Pe){(du/oly+u=1 ati =0
(1/Pe)(fu/dt)=0 atl=1.

If L is to be varied, in particular if it is to be allowed to
go to infinity, it is not suitable to use as the character-
istic length. There is, however, another length, namely
the square root of D, /r(e, ). In this case

Bufdr + v{ou/dn) = (@2w/dn?) — Pu)

a3

(14)
where
7= rlephfe,, o =zlr(e,)/De, 17

15
H= L[r(cf)/Dc;]“z, (13)

v=vlc,/Dric,)]"?.

Notice that L now occurs only in f and, so, may be
varied freely. The boundary conditions are

(1/v)(Pujén)+u=1 atp=>0
dufin =0 atwn=H.

(16)

There is yet another way of making distance dimen-
sionless, for ve,/ric,) is also a characteristic length.
Thus,

T =rles)tfe,, §=zriles)/ves

(17
E = Lrics)fvce, A= Dr(cg)/vies
giving the equation
Bufdt + dujBE = A(2*ufBE®) — Plu) (18)
with the boundary conditions
— A{dujoEy+u=1 atx=10 a9)

oufél =0 até=_§.

In all cases there are two parameters, Da and Pe in the
first, v and H in the second and A and Z in the third,
and, if only one appears in the equations, the other
pops up in the boundary conditions.

7. SOME GENERAL PRINCIPLES FOR MAKING THE
CHOICES OF DIMENSIONLESS QUANTITIES
Experience in working with dimensionless para-
meters suggests the following principles.

(a) If a study of the effect of varying a certain
quantity is to be done, make sure that this quantity
appears in none of the variables and in one and only
one dimensionless parameter.

(b) Let the dimensionless dependent variables be
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approximately in the range zero to one and let the
dimensionless parameters bear the burden of showing
the relative magnitudes of the several terms.

(c} Unless a physical dimension is going to be
varied, let the independent dimensionless variables
range over fixed finite intervals [often conveniently
(0, 1), {— =, =) or such].

The choice among several alternatives is governed
by the first of these considerations. Thus, if we are
varying the dispersion coefficient D, the first mode is
best. In particular, we note that, as D — o, the tubu-
lar reactor goes over into the stirred tank. For if
Pe =0ineq. (11), #*u/3t* = 0, Ju/d¢ is constant, and
this constant must be zero by the boundary condition
at{ = L, It follows that t is constant and a function of
7 only. Then integration of the second form of eq. (11)
from ( to 1 gives .

dufdr = (1/Pe)[(Gu/ol) —(du/o()o ] — DaP(u)

and, using the conditions (13), gives egs (), the equa-
tion for the stirred tank.?

The second of the three modes comes into s own if
L or vis the quantity to be varied, since v appears only
inv, and L only in H. In particular, if L — oo, H does
also and the second boundary condition is equivalent
to requiring u to be finite as » — oo v = 0, the first
spatial derivative disappears from the equation which
becomes the equation for diffusion and reaction in
a porous catalyst. Actually, the equations are more
often couched in terms of the first of eqs (11). As v — 0,
Pe — 0, Da — oo, but their product is the square of the
Thiele modulus, commonly written as ¢Z, giving

dufir = /ol — w2 Plu) (20)

{note that @ = H#). The boundary conditions do not
go over into those commonly used for the porous slab.
This seemns to be because, in the limiting case of no
flow, the physical sitvation is radically different and,
since “all boundary conditions arise from nature”,
they must be reformulated to reflect this properly.

Questions of catalyst dilution can best be answered
within the framework of the third mode of dedimen-
sionalization. For, if the catalyst in a bed is diluted to
a fraction of its activity 1/R, ric,) becomes ric,)/R
and L becomes LR. Thus, E is unaltered and A is
diminished by a factor of R. This is the known phe-
nomenon of the amelioration of longitudinal disper-
sion by catalyst dilution.?

8. ALTERNATIVE FORMS OF EQUATIONS

Sometimes, it pays to look at sets of first-order
equations rather than a single higher-order equation.

tThis limiting case is the mathematical argwment in Bavor
of Danckwerts’ boundary conditions. The physical argument
is that an internal minimum of the concentration of a disap-

ring reaciant is implausible.

1Sece Ho, T. €. and White, B. 5., 1991, Mitigation of
backmixing via catalyst dilution. Chem. Engng Sci. 46, 1861;
Ariz, R, 1992, Comments on mitigation of backmixing via
catalyst dilution. Chem. Engng Sci. 47, 507,
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For example, the steady-state form of eqgs (11) is
(1/Pe)(@%ufdl?) — (du/dl) — DaP(u)=0 (21)
with boundary conditions
—(Pe)idu/d}+u=1 at{=0

(22)
du/dl =0at{=1.
If w = (1/Pel{du/d{}), we have
=F
(du/dd) ew 23

{dw/dl) = DaP(u) + Pew.

The solutions to these equations can be represented
by curves in the u—w plane that satisfy

dw/du = 1 + DaP{u)/Pew = | + A P(u)/w (24)

and which pass frorm z — w = 1 to w = 0 in the fourth
quadrant. For a given pair of parameters, Da and Pe,
there is a unique trajectory passing from the diagonal,
where { is taken as zero, to the u-axis, where 1t reaches
the value 1. But it would be a mistake to seek this
trajectory by trial and error, changing the starting
point (¢, 4o — 1) until the w-axis is reached along the
trajectory at exactly [ = 1, for all such trajectories are
sotutions for the given ratio A and seme Pe. What that
value of Pe is can be calculated from either of the

integrals
° dy  fweT? dw
w —W Jo w+ AP(w)’

This is equivalent to using {/A = v2/D as the dimen-
stonless length variable, which is well suited to study-
ing the effect of varying length.

In fact, we see [Fig. 1{A) is drawn for A =1 and
a second-order reaction P(u) = u?7 that the trajecto-
ries must start on the part of the diagonal to the right
of 4., the starting point of the trajectory that goes 1o
the origin and for which Pe is infinite. The origin is
a critical point of eq. (23) with Jacobian

I: 0 Pe ]
DaP'(0) Pe

and hence eigenvalues

Pe Pe\? ,
5 o \/((_j_) + PeDaP (0))

and eigenvectors

Pe = (25)

1
[wz) + /(1/4) + AP’{O)]‘

The origin is thus a saddlepoint and the incoming
cigen-irajectory the path corresponding to a reactor
of infinite length and given Damkdhler/Peclet ratio,
A. Figure 1(B) shows some of these trajectories for
various A.

Sometimes, it may help to see the equations beyond
the bounds of physical reality. Figure 1(C) shows the
phase plane for P(u).= u? for all values of u and w.

There is a sympathy here, in this playing around
with different formulations of a modsl, with the poet’s

RUTHERFORD ARIS

W

tuy, Oy

Fig. . (A) Trajectoties of & in the w—w plane for vagious Pe,

A = 1, (B) Trajectories of & in the u—w plane for various A,

Pe = oo. {C) Trajectories of ¥ in the whole w—w piane for
: A=1

perpetual struggle with words. As Eliot has it (East
Coker, 172

S0 here [ am, in the middle way, having had
~ twenty years—

Twenty years largely wasted, the years of {entre
deux guerres

Trying to learn to use words, and every attempt

Is a wholly new start, and a different kind of
failure

Because one has only learned to get the better of
words .

For the thing one no longer has to say, or the
way in which

Cne is no longer disposed to say it. And so each
venture

Is a new beginning, 8 raid on the inarticulate . . .

9. HOMOTOFIES OF MODELS
If D - 0 in the dispersion model, we reach one of
the simplest models used in chemical reaction engin-
cering, the plug flow tubular reactor, or PFTR. In the
steady state, it satisfies the equations

dufdx = — P(u), w{}=1 (26)
This can be solved implicitly by quadrature
1 du
= — 27
: _[.tg) Py @7
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The other limit has been treated above and yields the
equation of the stirred tank, or CSTR. Let us denote
the system of equations (26) for the plug flow reactor
by #, and the stirred-tank equations (%) by 2, and
these for the tubular reactor with dispersion by &
Now Z forms a homotopic family between 2 and
2. If we sett y = 2/(Pe + 2), y =0 corresponds to
F @ and y -1 to F — 2. The solution to the
linear case is the ooly ong that can be written down
in closed form. Tt is obviously a combination of
exponentials of p& and — v{, where £ = z/L and

g=(1— [l + 2Day/(t — ] + 1}y
v ={1 — 3)}{[1 + 2Day/L — p}]** = 1}/y.
In fact, setting £ = 1 and

o =[1 + Day/(t — y)J/[1 + 2Day/(1 — )}
E)

(28)
(29)

we have
u(Da, 7)) = 2/{{o + 1)e* — (o — 1ye™"}. (31)

Note that as y =0, p—~ 20, v+ Dg and o— 1, s0
that w —exp(— Da), whereas, when p—1, wv—
[2Da(l — y)/y]1*2, o — [Day/2(t — )17 and u—
1/(1 + Da).

There are other ways of devising homotopic
families. The stirred tank may be broken down into
N stirred tanks each of (1/N)th the size of the original.
Then

Ha—y — #, — (DafN}Pl{u,) =0, {32)

u[|=1

is a set of equations for the concentration of reactant
in the several tanks. As N — o0, N, — 31}
— u'(¢) and we obtain the equations of . Clearly,
when N = 1, we have the system 2 Thus, § = }/N is
a pormalized parameter that takes the homotopic
systemn & of the CSTR sequence from & at f =0 to
2 at § = 1. The case of linear kinetics gives

i = u(Da, B) = (1 + pDa)= 1™, (33)

The full asymptotic expansion of (1 + 8Da)™ '/ as
B — 0 is not obvious, but may be obtained by ex-
panding exp [x — N In{l + x/N)], which is valid for
N = x. It gives

(1 + x/N)" ¥ ~ ™% + (x*/2N)e™*
+ [atx)/N22e ™ 4+ O(N 3}
and

a
alx) = ‘2‘—4(3x ~8).

This gives an asymptotic formula for the model & as

tY, Balakotaiah has pointed out to me rhat a better form
for ¥ would be T = (2/Pe) — (2/Pe?)[1 — exp (— Pe)], which
has the same limits and is the variance of the residence-timne
distribution, as are ¢ and £ for the other two families. We
shall see later how perceptive this remark is, but the formuia
for I cannot be mverted so that FPe or ¥ must serve in
a parametric representation.
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B -+ 0in the linear case. The other limiting case, § — 1,
is trivial.

A third way of getting from # to 2 is by a PFTR
with a recycle stream. If the ratio of the volumetric
flow rate of the recycle stream to the volumetric flow
rate of the feed is A, the Damkohler number for the
reactor is Daf(1 + ) = Da(l — o) if

w=1/1+4). (34)
Thus, if u is the exit value of c/c rand U the inlet value,
U=1—o+au (35)
and
Da(l — o) = -I.U dx (36)
u pix)

Clearly, when a =0, I/ = 1 and eq. (31) is the same
as eq. (27), te. A =P Az o—1, U—u since
U—wu=(1—2)]1 —u and, dividing through by
{1 — o), we have Pa = (1 — u}/P{u), which is the same
as eqs (9). Thus, # = 2.

In particular, for a first-order reaction, P(x) = x
and

In (U/u)=nfa + (! - e)/u] = Pa(l ~ &)
or
u(Da,a) =({1 —a)exp[ — (1 —x)Dal/{l — =«

xexp[ — (1 — wyDal}. (37)

Again the limiting cases give u(Dq, 0) = exp(— Da)
and u{Da, 1) = 1 /1 + Da), as we should expect.

The scope of the homotopy can be seen from sev-
eral figures drawn for Frst-order Kinetics. Figure
2 shows a comparison of the three homotopes at
o= f =y = 0.5 In this semi-log plot, the exponential
exp (— Da) of P is a straight line. Figures 3-5 show
that the homotopic parameters spread the curves out
nicely between the exponential, 2, and hyperbolic, 2,
limits. In these figures, o, § and y are the parameters
for #, 5 and 7, respectively.

It is clear that all three families give cather similar
monotone curves and that it may be hard 1o distin-
guish them. One device is to use the difference be-
tween the 141 + Da) of the model 2 and the

&0 an 100

Fig. 2. The u-Da relationship for the homotopic families.
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exp(— Da) of # as the scale at a given Du, writing
U(Da, x} = [u{Da, «) — exp({— Da)])/[1/(1 + Da}
—exp(— Da)] {38)

with similar expressions when the parameter is g or 7.
With a certain amount of algebraic labour, the
asympitotic behaviour as Dag — 0 can be obtained.
Thus, in the linear cases, we have

U{Da, &} ~ o + a{(l — a)Pa/3 + -+ -,

UDa, B) ~ B+ 28(1 — B)Du/3 + - -~
UDa, y) ~ T(3) = [¢/(1 = 11 —{1/2)

x [/~ {1 —exp [ = 2(1 — p/y1]). (39
Figure 5 shows that this function does not differ
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Fig. 6. The function I'{y),

greatly from y over the whole intervai. It is, of course,
the variance which Balakotaiah suggested (v. sup. fn.
26), and suggests a fourth general principle for the
choice of dimensionless parameters to be added to
those above; namely, whenever possible choose para-
meters that have a deeper meaning.

10. THE INVERSE PROBLEM

The steady-state performmance of a chemical reactor
is still of fundamental importance to chemical reactor
analysis, even though the exciting advances are being
made in the understanding of dynamics of reacting
systems. The direct problem, that of calculating the
performance of a reactor when the model and kinetice
are provided, is largely solved, thanks to the power of
the computing engines of our day. The inverse prob-
lern, even in quite elementary sttuations, can, however,
still present comsiderable difficulties and we are far
from a comprehensive answer. For example, if we
confine ourselves to monotonic reaction kinetics and
know the performance of the reactor through deter-
mination of the exit concentration as a function of the
Damkdéhler number, 4 = f(Da). This will clearly de-
pend on the nature of the mixing in the reactor, which,
at this level of sophistication, we associate with
a choice of model for the reactor. If we have a partially
mixed reactor and model it as a CSTR, we would infer
the wrong kinetic expression. To take an extreme
example, a first-order reaction im the stirred tank
would, by eq. (9), give

1D} = 1/(1 + Da).

If this performance were mistakenly thought to be
that of a monotonic reaction in'a PFTR with no
dispersion, it would be thought to satisfy eq. (11} and
so correspond to a kinetic expression P(u) obtained
by eliminating Da between P{u) = —f"(Da) and
w =f(Da), ie. P{u) = u* A first-order reaction ap-
pears to be second-order if the nature of the reactor is
ignored. Similarly, a first-order reaction in a PFTR
gives f{Da) = exp(— Da), and, by eqs (9), this per-
formance on the part of a CSTR would imply kinetics
Py = (1 — u)/[In (1/u)]. Figure 7 shows the differ-
ence this makes.

The two extremes of the homotopic family &, the
PFTR, and 2, the CSTR, yield easily to the inverse
problem, for, given f(Da), P(u) is obtained by elimin-
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Fig. 7. Apparent kinetics when & and 2 are confused.

ating Da between
#: u=[(Da), P(u) = —f'(Da) (40)
2: u=f{Da), P(u)=[1 —f(Da)]l/Da. (41}

Alternatively, we can use Da as a parameter along the
u—P{u) curve, The data are assvmed to be normalized
so that f(1)=1; hence, Da =0 corresponds to
mP)=(,)and Da = w to (w P)=1{0,0L

But if the two extremes are easy, the intermediate
members of the homotopy are very refractory when it
comes to finding an algorithm for the inverse prob-
lem. True, there is always the possibility of fitting, by
least-squared deviation, an appropriate P(u) curve,
‘but this is not a satisfying answer except under the
exigencies of practice. Consider only the configuration
of two CS8TRs in sequence;

I —t, —(Da/2yP{e,) =0
u, —uy — (Da/2)Plus).

The data give w, = f(De) and say nothing about u,.
The equations can, however, be solved in the form

uy; =y + (Pa/2) P(1;) (43)
Plu))=(2/Da)[1 — u; —(Da/2}P(u;)]. (4D

Were the kinetic law known, it would have been
represented by a monotonic curve from (0, 0) to (1, 1)
and, starting from [u,, P(u5)], the point [#;, P{u,)]
could be found from eqs (43) and (44) and would be on
the same kinetic curve. The value of Da used in these
equations would be given by the inverse function, F,
of f, ie. Da= Fluy) = F[ f(Da)). Since the kinetic
law is not known, the best we can hope for is an
intelligent guess; but, from this starting point, these
equations provide a map that can be used repeatedly
and would, had the starting point been exact, give
a sequence of points converging on (1, 1). If this criti-
cal point is a saddle, we have a practical trial-and-
error method that starts with a guessed value for P(u)
and finds the separatrix by iterating until the traject-
ory hesitates long enough in the neighbourhood of
{1, 1) before diverging to left or right. However, it is
limited to the case of two stirred tanks, for an exten-
sion to three would give only three equations for the
four unknown intermediate values of 1 and P(u)

(42)
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11. READING OTHER FEOPLE'S MODELS

The simplest models provide the foundations for
more complex models which have 1o be constructed
to answer more complicated problems. Thos, the
equations given so far are for the isothermal tubutar
reactor {sometimes paradoxically known as an
“emipty” tubular reactor). A momentum balance is
required if the assumption of plug flow is discarded
and an enthalpy balance is needed to obtain an equa-
tion for the temperature. With a packed bed, a further
set of equations is needed for the distribution of con-
centration and temperature within the particles,
though Carberry has shown that the pellets may often
be 1aken as isothermal.’ I will not go into the detail of
setting up such a set of equations, for this has been
covered in masterly fashion in a paper that deserves to
be better known than it is.! Rather will T start from
amodel in the literature and try to show how to read
it. It is entirely justifiable, in wrting a paper, to
suppress some of the tedium of the research and start
with a developed model taking it for granted that the
reader can Bll in the missing stages at will. There is an
analogy here with literary criticism, or rather, with
what used to be called the “lower” criticism—the
establishment of the text. This has a fintly old-
fashioned ring in days when a student can become
indignant at having his paper on the line “T'o thy high
requiem become a god™ rejected, “just because™ he
had misread his fancy, “god”, for Keats’ “sod”! The
so-called higher criticisin is concerned with the inter-
pretation of the text, and this presumes the lower, in
that it needs a valid text to work from. There is
a tendency on the part of some modern crtics to place
less emphasis on the author than common sense
would allow and I have tried to give one common
reader’s conclusions after venturing into the stormy
seas of contemporary criticism elsewhere! We are
fortunats in the engineering sciences to have a precise
language, impoverished of overtones it may be (see
remarks above), but it is not generally obnoxious to
the popular -isms, interpretive fashions or political
corrections of the day. 1t makes our congresses more
sober affairs than the risibilities of MLA meetings,
but, paradoxically, frees us to take ourselves rather
less seriously than do our lterary brethren.

As a brief example of how one begins to read
another’s model, let me refer to a paper of
Balakoiaiah and Luss!! which uses the two-phase
madel of the catalytic bed. Thus, we read at the top of

tCarberry, 1. J., 1967, Alcuni aspetti ingegneristici riguar-
danti le reazione catalitici. Quad. Fag. Chim. Ital. 3, 73

tAmundson, N. R., 1970, Mathematical modele of fixed
bed reaclors. Berichte der Bunsen-Gesellschaft fir physik-
alische Chemie T4, 30 Also to be found in The Mathematical
Understanding of Chemical Engineering Systems (Edited by
A. Varma and R. Ars), pp. 101109, Pergamen, London
(1980).

1Aris, R, An essay on contemporary criticism. New Liter-
ary History (to appear).

|Balakotaiah, V. and Luss, D, 1991, Explicit runaway
criterion for catalytic reactors with transport limitations.
AJLCHhE. J. 37, 17308,
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page 1781: “Assuming piug flow and nagligible axial
dispersion, the dimensionless energy. balance for
a first~-order reaction has the form:

d0/dE = Aexp(8)n — St — 6.), 8(0) = 0.

We should—and can, in a paper as well written as this
is—be able instantly to recognize (and subsequently
confirm from the definitions that follow and the Nota-
tion at the end of the paper) the three dimensionless
temperatures; the first, 8, is the temperatwre of the
reaction stream (since it ts a funciion of & and since it
is the driving force in the wall cooling term—which is
identified by the Stanton number), the second, &, the
wall temperature (because of its occurrence in the wall
cooling term) and the third, 8,, the catalyst pellet
temperature (because it s in the reaction term). We
note also that the positive exponential is being used
and check back to see if this assumption is made
explicit in the previous paragraph, which we may not
have read thoroughly in our haste to get to the equa-
ttons, It is, for we read: “We assume that the temper-
ature rise at ignitien is small enough so that the
Arrhenius temperature dependence can be replaced
by the positive exponential approximation.” Qur eyes
catch the next sentence: “We also neglect the reactant
consumptien in the fluid phase (but account for dif-
fusional limitations within the catalyst™. . So #, which
one might otherwise have thought to be the dimen-
sionless concentration of a first-order reactant, is dan
effectiveness factor. This is confirmed by a glance
downwards to eq. (6), where the familiar form of the
effectiveness of an isothermal sphere is to be seen,
followed by the definitions of the Biot number and
Thiele modulus. Why is the Thiele modulus a function
of 8,7 Of course! through the rate constant under the
square root, which is why there is an exponential of
0.58,—the result of the positive exponential approx-
imation.

A glance at their definizions (using their equation
numbers),

“B = (E/RT )T — T /T;)
O, ={(E/RTNT, — T /Ty)
Sr=AdUL/dunapey;, & = s/L
A =T[k(T }Ljug] [{— AH)C;/preys T, 1 (E/RT,I"

confirms these first impressions and reveals the for-
midable dimensionless group A, This appears 1o be
the product of a Damkdhler, a Prater and an
Arrhenius number; the latter two appear in the para-
meter B in Luss and Balakotaiah’s definition (5).

Next, we are given the relation between the “solid
and fluid temperatures . . .

0, =0+ BDaynexpi,) {3)

2)

where Da,, is the particle heat Damkdhler number
defined by

Daw = [pseprk(Te)/B) [VolS,] @

This must derive from a heat balance on the particie,
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which, though isothermal, is a source of heat through
the exothermic reaction within which it just balances
the logs of heat to the fluid. The “particle heat
Damkdhler nuember” is unfamiliar—is it a4 new one?
Certamly it is a Damkdhler number, in the sense that
it is the ratio of a reaction rate to » transport rate, but
it does not correspend to any of the four numbers in
Damkdhler's. classic paper.t It can be written as
[R{T ) Lfug1/[S,Lh/V tipp e,y ], where the first term
is the Damk&hler number already in use, A/B, and the
second is constructed like a reciprocal Stanton num-
bet, but with the particle heat transfer coefficient, &, in
place of the wall transfer coefficient, /. We are not
surprised to see it later in a ratio with the Stanton

number.

Since it is my purpose here to illustrate how one
reads a model that one meets for the first time in
someone else’s work, I have set down my reaction to
the introduction to this paper. Once one has grasped
the basic model one can go on to the higher criticism
of it. Such is not my purpose here.

12, POLISHING

In a 1976 paper 1 attempted to give some maxims
for mathematical modelting. Since the l1ast was “These
maxims will seti-destruct. Make your ownl” T would
be inconsistent were I to repeat them here.t On re-
view, they stand up quite well and most have been
exercised in this essay. 1 will allude to but one and that
the Frst, so that my end may be my beginning-—or, at
least, yesteryear’s beginning, “Cast the problem in as
clegant 4 form as possible.”

The role of aesthetics in the pursuit of truth has
long been a gquestion of vital interest to scientists.!
I am not pretending that the mathematical models
with which the engineer deals have the same signi-
ficance as the general theory of relativity although, in
these days of the resurgence of popular culture, such
pretensions might be encouraged in certain quarters.
But mathematical meodels by their very name may be
expected to share che elegance that is one of the chief
criteria of good mathematics. Its hallmarks are
economy and apiness. The passage from Eliot that
I began with continnes:!

And every phrase

And sentence that is right (where every word is at
home, :

Taking its place to support the others,

The word neither diffident ror ostentatious,

"Damkdhler, G., 1936, EinfliBe der Strémung, Diffusion
und des Warmeiiberganges auf dic Leistung von Keak-
tiongéfen. Z. Elektrochem. 42, 846.

*How to get the most out of an equation without reaily
trying. Chem. Engrig Edue. 10, 114 (1976} to be reprinted as
an appendix to Prover's forthcoming reprint of my Math-
emmtical Madelling Techmiques. Pitman, London (1978).

See, for instance, Chandrasekhar, S, 1987, Fruth and
Beauty: Aesthetics and Motivarions in Science, University of
Chicago FPress, Chicago.

IIT, 8. Eliot, Four Quartets. Litrle Gidding, V, 216-226.
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An easy commerce of the old and the new,

The common word exact without vulgarity,

The formal word precise but not pedantic,

The complete consort dancing together)

Every phrase and every sentence is an end and
a beginning,

Every poem an epitaph.

Dare I add?
Every choice and every equation is an end and
a beginning,
Every model an epitaph.

NOTATION
chemical species
adsorbed chemical species
coefficient in the asymptotic expansion of
eq. (33)
Damkdhler oumber
flux vector, net flux
generation per onit volume, total genera-
tion
content par unit volume, content (e.g.
mass, enthalpy)
length of wabular reactor
number of stages in &
PFTR with no dispersion
Peclet number :
dimensionless reaction ratg
CSTR
volumetric flow rate
tecycle reactor
reaction rate
sequence of CSTRs
PFTR with dispersion
concentration as a fraction of the differ-
ence between & and 2
dimensionless concentration
volume of reacter
(1/Pe)(du/d)
distance from inlet in PFTR

ABC
A*, B*
a{x)
Da

f F

g G

h, H

AR

Plu)

YRIES e

=

(Da, )

Ngﬁx

Greek letters

o By hemotopy paramsters

T alternative parameter to y
A DajPe

& g forms of dimensionless length

i v exponents in the solution of & for linear
kinetics

L D/VE, dispersion or reciprocal Peclet
number

o constant in the solution of & for linear
kinetics feq. (30)]

A o dimensionless time
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APPENDIX

It might be appropriate to draw attention to some of the
early work on the one-phase tubular reactor model, even if
only by way of an appendix which makes no pretence to
comprehensiveness. The solution of F was obtained by
Irving Langmuir in 1908, though this paper does not seem to
bhave had much currency, for Forster and Geib in 1934
{gquoted by Dambkéhler in 1937) refer to the 1908 paper by
Bodsnstein and Wolgast that provoked Langmuit's, but not
to Langmuir's solution, obtained by linearization. The
beundary conditions (Danckwerts, 1953), over which much
ink was spilled in the 19505, were chtained by Langmuir in
908 and he deals with the limiting cases of “mixing nearly
complete” and “only slight mixing™. Langmuir appears to
have been the first to have considered the homotopy #5739
and the homotopy parameters, ¢, f, y, that we have been
using might suitably be called Langmuir numbers, save that
this was a minor work of a scientist best known for many
other achievements. Forster and Geib, anticipating, though
not explicitly, the idea of a residence-tume distribution, used
a curiously round-about method of obtaining the steady-
state solution, first determining the residence-time distribu-
tion and then integrating the exponential over all times.
They credit Bodenstein and Welgast (1908) with recognizing
that there are different reaction times and with giving 2 as
the [imiting case of . This anticipates Danckwerts™ (1953)
treatment of the rezsidence time disiribution by nearly 20
years, though, of course with nothing like Dianckweris’ gen-
eralily. since it deals only with the case of longitudinal
dispersion int a tube. The anaiogy between % and # s, of
course, standard text book fare {Levenspiel, 1972; Aris, 1989).
Amundzon and Aris (1957) showed how it fitted with the
observation that the Peclet number (based on the particle
diameter} in a packed bed has a value near 2, as Wilhelm and
McHenrty (1957) had found in an elegant series of experi-
ments. Lapidus and Deans (1960) exploited it for more de-
tailed models of the packed bed. More recently, Guon and
Vortmeyer {1950} have introduced a reaction-independent
transformation that shows how the &, & equivalence holds
for systemas of first-order reactions. Theit patameter p is my
y and is interpreted as the probability of axial displacement.



